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NIF room-temperature (“warm”) ignition-scale 
hohlraum experiments with higher-Z gas fill 

Motivation: 
•  Hotter hohlraum plasma could reduce inner-beam SRS (more Landau damping) 
•  Higher Z hohlraum gas fill absorbs more laser via inverse bremsstrahlung 
•  Warm shots allow gases that freeze at cryo, e.g. hydrocarbons 
•  Warm shots easier to field, cheaper (no cryo hardware) 
 
Shape: in-flight shell vs. stagnated hotspot  
•  Warm hotspots close to round with less Δλ than cryos 
•  But warm shell pancaked – need more Δλ to make round 
•  Opposite “swing” of cryos – shell round but hotspot pancaked 
 
Backscatter:  Warms have less inner-beam SRS, more outer-beam SBS 
•  Pure Δλ scaling or intrinsic effect of gas fill? 
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Does higher Z gas fill improve inner-beam propagation = round implosion 
with less cross-beam transfer to inners (Δλ)?  Jury still out. 
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Warm shots use hydrocarbon gas fills, retuned laser 
picket and trough 
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Cryo Warm Comments 
Hohlraum fill 0.96 mg/cc He4 0.82 mg/cc C5H12 higher Z, same ne 

Capsule fill D-He3 propane: C3{H or D}8 D, He leak warm 

•  Main pulses differ: 
shots have different 
design histories 
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•  Higher warm picket: 
more energy to burn through 
higher-Z gas 
•  Lower trough to  
compensate 

19ns: shown on next slide 
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Higher Z hohlraum gas fill increases inverse 
bremsstrahlung laser absorption, gives hotter plasma 

4 

Hydra modeling: electron temperature at mid peak power (19 ns): 

Te  [keV] 

Directly depends on gas fill 

ne, Te, flows, etc. all depend weakly on κIB 

Δ~200 eV 

Δ~600 eV ~4 keV ~3.4 keV 

0 

Warm C5H12         -            Cryo He        =               difference 



Implosion must be symmetric for ignition 
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NIF chamber 

Outers 
 (44o, 50o) 

Inners 
(23o, 30o) 

Cross-beam 
Energy 
transfer 

gravity 

P2<0: pancake: 
outers high 

P2>0: sausage: 
Inners high 
shell 

X-ray 
backlighter 
“ConA” shot 

Gated 
X-ray 
detector 

self emission 
Hotspot 



Warm shot history 
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Elaser 
~ 
Calendar 
time 

Hohlraum length 

Two 500 kJ symcaps. 
Better inner propagation than 
cryo: Less inner SRS, more 
outer SBS, less pancake 

FY13 

2009 

1: 820 kJ, Δλ = 1.5 Å, large pancake 

2: 946 kJ, Δλ = 3.5 Å: round hotspot!  
3.5 Å used subsequently 

3 and 4 (repeat): 
1.26 MJ  

round hotspot 

Shot 6: +700 um:  
shell pancaked 

small P4 2D convergent 
ablator (ConA):  
in-flight  
shell shape 

5: -300 um:  
shell pancaked 
diamond (P4>0) 
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Hotspot shape: less transfer to be round warm vs. 
cryo 

7 

round Shots 2, 4 

•  After shots 2 and 4 we chose Δλ = 3.5 Ang. as giving round hotspot 

Shot 1: low power 

sausage 

pancake 

Suggests higher Z improves inner beam propagation 
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But warm 2D ConA’s (last two shots) revealed 
pancaked in-flight shell 

8 

Cryo 
warm 

sausage 

pancake 
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Warm data 

Slope from Hydra  
Cryo playbook 
[O. Jones] 

Hydra playbook [O. Jones]: Δλ = 4.7 Å to make warm shell round 



Best shape shots 
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Elaser [kJ] Ppeak [TW] Hohlraum length Δλ23,30  [Å] 
 

Cryo N130314 1340 360 +700 um: low shell P4 6.0, 4.5 
Warm N130627 same 1.06x same 3.5, 3.5 

time 
cryo 

warm 

P2 

sausage 

pancake 

In-flight hotspot 



In-flight shell and hotspot shapes “swing” oppositely 
for warm vs. cryo: pure Δλ scaling or gas Z effect? 
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Stalk mounted: (0,0)! 
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Cryo best  
shape 

Warm best  
shape 

cryo 

1R. H. H. Scott et al., PRL 2013 

P4
1 and tent distorting hotspot 

shape 
 
Tent talks (already happened): 
Nagel, Haan, Town 
 
Warm hotspot also complicated 
by propane capsule fill: cooler 
hotspot, signficiant shell 
emission 



Warms have less inner SRS, more outer SBS than 
cryos.  Pure Δλ scaling, or gas fill effect? 
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50o SBS: more for 
warms than cryos 

*Almost no 44o SBS 
(DrD sensors)  
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Jury out on whether higher Z gas fill improves inner 
beam propagation 
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•  Warm and cryo shots have different symmetry and backscatter  

•  Purely due to Δλ or gas Z effect? 

•  Need to compare implosions with good symmetry throughout time 

•  Not achieved yet warm, maybe cryo (stalk vs. tent mount) 

•  Time-varying Δλ or cone fraction may be needed 

•  Should check early time symmetry of warm shots – keyhole, re-emit 



• BACKUP SLIDES 

Author—NIC Review, December 2009 13 NIF-0000-00000s2.ppt  



Jury out on whether higher Z gas fill improves inner 
beam propagation 
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Cryo shape:  
•  2D ConA’s: in-flight P2 sausage and P4 
•  Reduce Δλ to remove P2, +700 um hohlraum to remove P4 
•  Round shell swings to  pancaked hotspot – tent? 
 
Warm shape: 
•  Opposite P2 swing from cryo: shell pancake but hotspot round!   
•  More Δλ needed to remove shell P2  
•  Warm hotspot complicated by cool hotspot (propane), shell emission 

To settle if high-Z gas improves inner beam propagation, need to compare 
implosions with good symmetry throughout time 

 
Time-varying Δλ or cone fraction may be needed - warm and cryo 

 
Should check symmetry and strength of warm first 3 shocks - keyhole or  

re-emit shot 



Other relevant presentations – all before this one! 
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Tent and shape:  
O. Jones, IFSA 2013 
S. Nagel, Wed. AM, NO4.00014 
S. Haan Tues. PM, JO7.00001 
 
Low-mode asymmetries:  
A. Kritcher Wed AM NO4.00004 
R. Town Wed PM QI3.00002 
 
Inline SRS Hydra modeling:  
M. Marinak, Wed. AM, NP8.00090  



Overall reflectivity slightly lower on warms. Pure Δλ 
scaling, or gas fill effect? 

Author—NIC Review, December 2009 16 NIF-0000-00000s2.ppt  
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P2 shape: positive for sausage (prolate), negative for 
pancake (oblate) 
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Equatorial 
X-ray 
Detector: 

hotspot 

Hotspot images 
shot N130405  

In-flight shell images 
shot N130509 

shell 



•  Nuclear: Deuterated propane C3D8 -> up to 2.6E11 neutrons,  Tion 
up to 1.7 keV 

Author—NIC Review, December 2009 18 NIF-0000-00000s2.ppt  



But: 2D ConA shots show warms have large in-flight 
pancake, cryos had in-flight sausage 

Author—NIC Review, December 2009 19 NIF-0000-00000s2.ppt  

☐: N121219: cryo -300 µm 
✚: N130211: cryo +700 µm 
☐: N130509: warm -300 µm 
✚:  N130627: warm +700 µm 

P0 = radius P2 
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Blue: cryo 
☐: Lhohl -300 µm 
✚: Lhohl +700 µm 
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Outer beam SBS: DrD sensors show more on cone 
50 than 44, and give power scaling 
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•  DrD = drive diagnostic sensor - at least one beam in each quad 
•  3ω power history - forward and backward (separated in time) 

•  N130125: one quad on each cone had 18% higher power: power scaling on one shot! 

•  Why more SBS on 50’s than 44’s? 
•  50 focal spot smaller -> higher intensity 
•  Cross-beam energy transfer calculations: post-transfer power on 50’s > 44’s 
•  Could be pure intensity scaling; plasma conditions may also play role 
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SBS on 50o outer cone 
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N130405: 
1.3 MJ shot 

•  Cryo shots show some outer SBS late in time, esp. for longer pulses or high power 

•  Warm platform good for studying outer SBS and mitigation – cheaper, reproducible 

incident 

SBS 
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Warm radius slightly larger: 
cooler hotspot, shell emission? 

N130627: 
0.5x capsule  
fill pressure 
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